LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2013

CH 3810 - MOLECULAR SPECTROSCOPY

Date: 09/11/2013	Dept. No.	Max.: 100 Marks
Time: 9:00 - 12:00	l	

Part-A

Answer all questions. Each question carries two marks.

- 1. Calculate the force constant of C-C in alkane? The stretching frequency is 1280cm⁻¹.
- 2. What is a spherical top molecule? Give an example.
- 3. Mention the differences between Rayleigh and Raman Scattering.
- 4. State Frank Condon principle.
- 5. What are R-bands?
- 6. What is free induction decay?
- 7. Sketch the EPR spectrum of methyl radical.
- 8. If two signals differ by 1.5 ppm in a 60 MHz spectrometer, how do they differ in ppm in a100 MHz spectrometer?
- 9. How many NQR transitions are possible for a nucleus of spin I = 3/2?
- 10. Mention the significance of quadrupole coupling constant.

Part-B

Answer eight questions. Each question carries five marks.

- 11. What are the factors affecting the width of the spectral lines? Explain.
- 12. Explain the types of transitions in electronic spectroscopy.
- 13. A particular molecule is known to undergo spectroscopic transitions between the ground state and two excited states, (a) and (b), its lifetime in (a) being about 10 s and in (b) about 0.1 s. Calculate the approximate uncertainty in the excited state energy levels and the widths of the associated spectral lines in hertz.
- 14. Explain the following for the linear and nonlinear polyatomic molecules.
 - (a) fundamental vibrations and (b) overtones and combination frequencies
- 15. Discuss the fingerprint absorption frequencies of functional groups for organic compounds in IR region.
- 16. The transmittance of an aqueous solution of $KMnO_4$ at a certain wavelength is 1 percent (0.01) or a 10^{-3} molar solution in a 1 cm cell. What is its absorbance and molar absorption coefficient?

- 17. Explain the calculation of coupling constant in ¹H NMR with an example.
- 18. Describe the splitting pattern observed in the low and high resolution ¹H NMR spectrum of propanaldehyde.
- 19. Sketch the EPR spectra of i) H_2^+ ii) D_2^+
- 20. What is pure NQR? Is pure NQR enough to calculate the quadrupole parameters in the case of ¹⁴N containing compound?
- 21. While isomer shift is a function of S electron density, quadrupole splitting is not so Explain.
- 22. Explain the fact that Mössbauer spectrum of $[Fe(CN)_5NO]^{2-}$ shows two lines while that of $[Fe(CN)_6]^{4-}$ shows only one line.

Part-C

Answer four questions. Each question carries ten marks.

- 23. Discuss the transition involved in the spectrum of a diatomic vibrating rotor with an example.
- 24. Draw Morse curve and explain the anharmonicity of the oscillator.
- 25. Assume the following data for the molecule ¹H³⁵Cl:

Bond length: 127.5 pm, Bond force constant: 516.3n Nm⁻¹,

Atomic masses: ${}^{1}H = 1.60 \times 10^{-27} \text{kg}$, ${}^{35}\text{C1} = 58.06 \times 10^{-27} \text{kg}$

Calculate the following and give answers in cm⁻¹

- (a) Zero point energy and the energy of fundamental vibration
- (b) Rotational constant B
- (c) Wave numbers of the lines $P_{(1)}$, $P_{(2)}$, $P_{(3)}$, $R_{(0)}$, $R_{(1)}$, $R_{(2)}$
- 26. (a) What is COSY? Discuss the COSY of n-propanol.
 - (b) Explain geminal and vicinal coupling with examples (6+4)
- 27. (a) Explain isotropic and anisotropic hyperfine splitting with examples?
 - (b) Why is EPR recorded in derivative mode? Justify the use of microwave radiation in EPR. (6+4)
- 28. (a) How is the oxidation state of an element determined the using Mossbauer spectroscopy?
 - (b) What is asymmetry parameter? Mention its importance. (6+4)